「成果情報名]ウンシュウミカンの新しいシートマルチ資材の果実品質への影響および耐久性の評価

[**要約**]ウンシュウミカンにおける新たなシートマルチ資材の4年間被覆使用における評価は、 果実品質向上効果が760AG および WS-M で慣行資材と同等、耐久性が760AG で慣行資材と同 等以上である。

[キーワード] ウンシュウミカン、シートマルチ、新資材、耐久性

[担当] 長崎県農林技術開発センター・果樹研究部門・カンキツ研究室

[連絡先] (代表) 0957-55-8740

[区分] 果樹

[分類] 行政

[作成年度] 2013 年度

[背景・ねらい]

ウンシュウミカンのシートマルチ栽培は、高品質果実生産には欠かせない栽培技術である。 近年、各メーカーより新たなシートマルチ資材が開発されているが、その有効性が明らかにさ れていない。

そこで、慣行資材と比較して、果実品質への影響および資材の耐久性について検討する。

「成果の内容・特徴〕

- 1. 果実の糖度は、使用4年まで760AG、WS-Mが慣行資材と同程度である(表1)。
- 2. 果実の着色歩合は、資材間の差がない(表1)。
- 3. 果実の酸含量は、資材間の差がない(データ略)。
- 4. 土壌体積含水率は、使用 4 年まで 760AG、WS-M が慣行資材と同程度である(表 2)。
- 5. 資材の透水率は、使用4年まで760AGが慣行資材より低い(表3)。
- 6. 資材の貫入抵抗の未使用時からの使用 4 年までの低下率は、760AG、WS-M が慣行資材と同程度である(表 2)。

[成果の活用面・留意点]

- 1. 本試験は、「原口早生」を供試し、シートマルチ資材を7月中下旬から11月上旬まで被覆し、収穫後は資材の汚れを除去後、折りたたんで倉庫に収納した結果である。
- 2. 760AG(繊維重量 59g/m²)、700AG(繊維重量 46g/m²)、1000AG(繊維重量 61g/m²)はポリエチレン不織布(商品名:タイベック 760AG、タイベックソフトタイプ、タイベックハードタイプ)の透湿性シート、WS-M はポリオレフィンクロスシート(商品名:パールライトソフト)の非透湿性シート、PUX50(繊維重量 100g/m²)はポリエステルシート+不織布 2 層(商品名:白黒マルチ名人)の透湿性シートである。
- 3. 園地の状態により、シートマルチ資材の特徴を考慮しながら使い分ける必要がある。

[具体的データ]

表 1 シートマルチ資材の違いによる果実糖度および着色歩合(2010~2013年)

区分 -	糖度(Brix)				着色歩合			
	使用1年	使用2年	使用3年	使用4年	使用1年	使用2年	使用3年	使用4年
760AG	12.5 ab ^z	12.5 ab	11.8 a	12.4 ab	8.7 a	9.5 ab	9.4 bc	8.3 a
WS-M	12.2 b	12.2 b	12.1 a	11.9 c	8.4 a	9.1 b	9.6 ab	8.7 a
PUX50	12.7 a	12.4 ab	12.2 a	11.8 cd	8.7 a	9.1 b	9.7 ab	8.4 a
700AG(慣行)	12.5 ab	12.7 a	11.9 a	12.7 a	9.0 a	9.6 a	9.7 ab	8.6 a
1000AG(慣行)	12.3 ab	12.5 ab	12.1 a	12.1 bc	8.8 a	9.3 ab	9.6 ab	8.8 a
無処理	10.7 c	11.6 c	10.6 b	11.5 d	7.2 b	8.4 c	9.1 c	8.4 a

²縦の異なる文字間には、Tukeyの多重検定により5%の水準で有意差あり

表 2 シートマルチ資材の違いによる土壌体積含水率(2010~2013年)

区分	土壤体積含水率(%) 2						
	使用1年	使用2年	使用3年	使用4年			
760AG	10.0 b ^y	14.5 b	11.9 b	12.5 c			
WS-M	8.8 b	13.5 b	11.3 b	15.2 c			
PUX50	10.4 b	15.9 b	10.9 b	22.4 b			
700AG(慣行)	10.4 b	14.4 b	10.4 b	13.9 c			
1000AG(慣行)	10.6 b	12.4 b	12.2 b	14.8 c			
無処理	22.6 a	28.7 a	24.6 a	26.6 a			

²土壌体積含水率は TDR 計で 10 月下旬に測定

表3 シートマルチ資材の違いによる資材の透水率および貫入抵抗(2010~2013年)

	透水率(%) ^z					貫入抵抗 ^y			
区分						未使用	使用4年		
	未使用	使用1年	使用2年	使用3年	使用4年	(kg/cm^2)	(kg/cm ²)	(低下率(%))	
760AG	0.0	0.0	0.0	0.0	0.03	3.4	2.6	77.7	
WS-M	0.0	0.0	0.0	16.1	32.1	2.9	2.1	74.7	
PUX50	0.0	0.0	0.1	48.6	52.9	2.5	1.3	50.5	
700AG(慣行)	0.0	0.0	0.0	0.4	8.7	2.6	2.3	86.9	
1000AG(慣行)	0.0	0.0	0.0	1.5	0.3	3.0	2.3	75.2	
無処理	_	_	_	_	_	_	_		

²透水率は、資材に弛みをつけ 50ml の純水が 30 分後に透水した割合。資材の調査部分は、外観が最も保持されている部分 3 点、最も劣化している部分 3 点の平均

[その他]

研究課題名 : 気候温暖化に対応したカンキツ栽培技術の開発

予算区分 : 県単

研究期間 : 2009~2013 年度

研究担当者 : 荒牧貞幸、古川忠、林田誠剛

y縦の異なる文字間には、Tukeyの多重検定により5%の水準で有意差あり

ッ貫入抵抗は、土壌硬度計(山中式)を使い、円錐が資材を突破時の抵抗値